一、rbf神经网络原理
rbf神经网络原理是用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接映射到隐空间,而不需要通过权连接。
当RBF的中心点确定以后,这种映射关系也就确定了。而隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和,此处的权即为网络可调参数。其中,隐含层的作用是把向量从低维度的p映射到高维度的h,这样低维度线性不可分的情况到高维度就可以变得线性可分了,主要就是核函数的思想。
这样,网络由输入到输出的映射是非线性的,而网络输出对可调参数而言却又是线性的。网络的权就可由线性方程组直接解出,从而大大加快学习速度并避免局部极小问题。
扩展资料
BP神经网络的隐节点采用输入模式与权向量的内积作为激活函数的自变量,而激活函数采用Sigmoid函数。各调参数对BP网络的输出具有同等地位的影响,因此BP神经网络是对非线性映射的全局逼近。
RBF神经网络的隐节点采用输入模式与中心向量的距离(如欧式距离)作为函数的自变量,并使用径向基函数(如Gaussian函数)作为激活函数。神经元的输入离径向基函数中心越远,神经元的激活程度就越低(高斯函数)。
RBF网络的输出与部分调参数有关,譬如,一个wij值只影响一个yi的输出(参考上面第二章网络输出),RBF神经网络因此具有“局部映射”特性。
参考资料来源:百度百科-径向基函数网络
二、bp和rbf的区别
BP网络用于函数逼近时,权值的调节降法,这种调节权值 的方法有它的局限性,既存在着收敛速度慢和局部极小等缺点。而径向基神经网络在逼近能力、分类能力和学习速度等方面均优于BO网络。
从理论上讲,RBF网络和BP网络一样可近似任何的连续非线形函数,两者的主要差别在于各使用不同的作用函数,BP网络中的隐层节点使用的是Sigmoid函数,其函数值在输入空间中无限大的范围内为非零值,而RBF网络的作用函数则是局部的。
三、只有温度数据怎么建立rbf神经网络模型
该网络的输出是什么?RBF神经网络的建立和训练主要有以下几种形式:
1.net=newrbe(P,T,spread)
newrbe()函数可以快速设计一个径向基函数网络,且是的设计误差为0。第一层(径向基层)神经元数目等于输入向量的个数,加权输入函数为dist,网络输入函数为netprod;第二层(线性层)神经元数模有输出向量T确定,加权输入函数为dotprod,网络输入函数为netsum。两层都有阀值。
第一层的权值初值为p',阀值初值为0.8326/spread,目的是使加权输入为±spread时径向基层输出为0.5,阀值的设置决定了每一个径向基神经元对输入向量产生响应的区域。
2.[net,tr] =newrb(P,T,goal,spread,MN,DF)
该函数和newrbe一样,只是可以自动增加网络的隐层神经元数模直到均方差满足精度或者神经元数模达到最大为止。
P=-1:0.1:1;
T=sin(P);
spread=1;
mse=0.02;
net=newrb(P,T,mse,spread);
t=sim(net,P);
plot(P,T,'r*',P,t)3.还可以直接建立广义RBF神经网络:net = newgrnn(P,T,spread)泛回归网络(generalized regression neural network)广义回归网络主要用于函数逼近。它的结构完全与newbre的相同,但是有以下几点区别(没有说明的表示相同):
(1)第二网络的权值初值为T
(2)第二层没有阀值
(3)第二层的权值输入函数为normpod,网络输入函数为netsum
P=0:1:20;
T=exp(P).*sin(P);
net=newgrnn(P,T,0.7);
p=0:0.1:20;
t=sim(net,p);
plot(P,T,'*r',p,t)
四、rbf神经网络的输入参数个数有上限么
没有规定说只能有一个输出,输出向量维数也是根据你的输出样本确定的。在RBF网络之前训练,需要给出输入向量X和目标向量T,训练的目的是要求得第一层和第二层之间的权值W1、阀值B1,和第二层与第三层之间的权值W2、阀值B2。整个网络的训练分为两步,第一部是无监督的学习,求W1、B1。第二步是有监督的学习求W2、B2。newrbe()函数:和newrb()功能差不多,用于创建一个精确地神经网络,能够基于设计向量快速的无误差的设计一个径向基网络。该函数在创建RBF网络的时候,自动选择隐含层数目,隐藏层的数目等于样本输入向量的数目,使得误差为0。在样本输入向量非常多的情况下,用rbe就不大合适。
五、rbf神经网络和bp神经网络有什么区别
毕业论文在做神经网络,已经到后期了可是还是搞不懂这两个的具体区别有同学从理论上讲,RBF网络和BP网络一样可近似任何的连续非线形函数,两者的主要
六、MATLAB工具箱里的RBF神经网络newrb是什么算法
newrb设计了径向基网络,调用格式:
net = newrb
[net,tr] = newrb(P,T,goal,spread,MN,DF)
P-Q组输入向量组成的R×Q维矩阵;
T-Q组目标分类向量组成的S×Q维矩阵;
goal-均方误差,默认值为0;
spread-径向基函数的扩展速度,默认值为1;
MN-神经元的最大数目,默认是Q
DF-两次显示之间所添加的神经元数目,默认值为25;
net-返回值,一个径向基网络;
tr-返回值,训练纪录。
该函数设计的径向基网络net可用于函数逼近。径向基函数的扩展速度spread越大,函数的拟合就越平滑。但是,过大的spread意味着需要非常多的神经元以适应函数的快速变化。如果spread设定过小,则意味着需要许多神经元来适应函数的缓慢变化,这样一来,设计的网络性能就不会很好。
|